Secondary factor induced stock index time-series prediction using Self-Adaptive Interval Type-2 Fuzzy Sets
نویسندگان
چکیده
The paper introduces an alternative approach to time-series prediction for stock index data using Interval Type-2 Fuzzy Sets. The work differs from the existing research on time-series prediction by the following counts. First, partitions of the time-series, obtained by fragmenting its valuation space over disjoint equal sized intervals, are represented by Interval Type-2 Fuzzy Sets (or Type-1 fuzzy sets in absence of sufficient data points in the partitions). Second, an Interval Type-2 (or type-1) fuzzy reasoning is performed using prediction rules, extracted from the (main factor) time-series. Third, a type-2 (or type-1) centroidal defuzzification is undertaken to determine crisp measure of inferences obtained from the fired rules, and lastly a weighted averaging of the defuzzified outcomes of the fired rules is performed to predict the time-series at the next time point from its current value. Besides the above three main prediction steps, the other issues considered in the paper include: (i) employing a new strategy to induce the main factor time-series prediction by its secondary factors (other reference timeseries) and (ii) self-adaptation of membership functions to properly tune them to capture the sudden changes in the main-factor time-series. Performance analysis undertaken reveals that the proposed prediction algorithm outperforms existing algorithms with respect to root mean-square error by a large margin (Z23%). A statistical analysis undertaken with paired t-test confirms that the proposed method is superior in performance at 95% confidence level to most of the existing techniques with root mean square error as the key metric. & 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملComparison of Two Partitioning Methods in a Fuzzy Time Series Model for Composite Index Forecasting
Abstract—Study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of tackling vague and incomplete data. A variety of forecasting models have devoted to improve forecasting accuracy. Recently, Fuzzy time-series based on Fibonacci sequence has been proposed as a new fuzzy time series model which incorporates the concept of the Fibonacci sequence, the f...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملFuzzy dual-factor time-series for stock index forecasting
There is an old Wall Street adage goes, ‘‘It takes volume to make price move”. The contemporaneous relation between trading volume and stock returns has been studied since stock markets were first opened. Recent researchers such as Wang and Chin [Wang, C. Y., & Chin S. T. (2004). Profitability of return and volume-based investment strategies in China’s stock market. Pacific-Basin Finace Journal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 171 شماره
صفحات -
تاریخ انتشار 2016